Présentation de l'Univers

Existe-t-il des points communs entre la structure d'un atome et celle d'une galaxie?

1) L'Univers, du très petit au très grand

→ activité 1 : Description de l'Univers

A l'échelle microscopique, la matière est constituée d'<u>atomes</u>. Un atome est constitué d'un <u>noyau</u> autour duquel tourne des <u>électrons</u>. L'atome est environ <u>100 000 fois plus gros que son noyau</u>. Entre les électrons et le noyau il y a du <u>vide</u> : on dit que l'atome a une structure <u>lacunaire</u>.

Le <u>système solaire</u> est constitué du <u>Soleil</u> (une étoile) et de <u>8 planètes</u> en mvt autour du Soleil. On y trouve aussi quelques objets de différentes tailles : poussières, astéroïdes, comètes ...

Entre les planètes et le Soleil, il y a essentiellement du vide.

Une <u>galaxie</u> est un regroupement d'étoiles. Notre Galaxie, appelée la <u>Voie lacté</u>, comporte plusieurs <u>centaines de milliards d'étoiles</u>. Autour de certaines de ces étoiles se trouvent des planètes, appelées <u>exoplanètes</u>, et des systèmes planétaires extrasolaires. Entre les étoiles d'une galaxie, comme entre les galaxies, il y a essentiellement du <u>vide</u>.

Les dimensions dans l'Univers sont <u>très différentes</u> : de 10⁻¹⁵ m pour un noyau d'atome à 10²¹ m pour le diamètre d'une galaxie !

Conclusion: Du minuscule atome aux gigantesques galaxies, le remplissage de l'espace par la matière est essentiellement <u>lacunaire</u>.

2) La lumière pour mesurer des distances

1) Propagation rectiligne de la lumière

La lumière se propage dans tous les <u>milieux transparents</u>. Elle se propage en <u>ligne droite</u> dans un <u>milieu homogène</u>.

La propagation rectiligne de la lumière permet de mesurer des distances ; pour cela il faut connaître sa vitesse.

2) Vitesse de la lumière

→ activité : La mesure de la vitesse de la lumière

La valeur de la vitesse de la lumière c dans le vide et dans l'air est d'environ 3,00 x 10⁸ m · s⁻¹.

La distance d parcourue par la lumière pendant la durée Δt est $d = c \times \Delta t$.

Les étoiles visibles dans le ciel sont très éloignées. Pour faciliter la comparaison des distances dans l'Univers, les astronomes utilisent une autre unité de longueur : l'année lumière.

L'année lumière (a.l.) est la distance parcourue par la lumière dans le vide en une année.

Soit 1 a.l. = 299 792 458 x 365,25 x 24 x 60 x 60 = 9,46 x 10^{15} m.

3) Voir loin, c'est voir le passé

L'étoile polaire est située à 4,08 x 10¹⁸ m de la Terre, soit 431 a.l. La lumière venant de cette étoile a voyagé pendant 431 ans avant d'arriver sur la Terre. On la voit donc telle qu'elle était il y a 431 ans.

De même, la galaxie la plus proche de nous est la galaxie d'Andromède qui se situe à 2 millions a.l. Lorsqu'on l'observe, on la voit telle qu'elle était il y a environ 2 millions d'années.

<u>Conclusion</u>: Plus les objets que nous observons sont éloignés, plus la lumière a mis du temps à nous parvenir. La lumière émise par des objets lointains témoigne du passé de l'Univers.

3) Unité et ordre de grandeur

1) Unité adaptée

L'unité de longueur dans le système international (S.I.) est le mètre (m).

Les longueurs sont souvent exprimées avec des multiples et des sous-multiples.

Ex: - longueur d'une cellule : 5µm = 5 x 10⁻⁶ m
- le rayon de la Terre = 6 380 km = 6 380 x 10³ m = 3,380 x 10⁶ m.

```
* Multiples et sous-multiples du mètre :

femtomètre : 1 fm = 10<sup>-15</sup> m

picomètre : 1 pm = 10<sup>-12</sup> m

nanomètre : 1 nm = 10<sup>-9</sup> m

micromètre : 1 µm = 10<sup>-6</sup> m

millimètre : 1 mm = 10<sup>-3</sup> m

mètre : 1 m

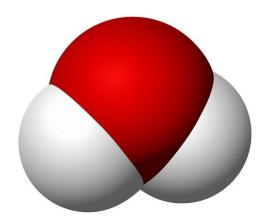
kilomètre : 1 km = 10<sup>3</sup> m

mégamètre : 1 Mm = 10<sup>6</sup> m

gigamètre : 1 Gm = 10<sup>9</sup> m
```

2) Ordre de grandeur

Pour comparer des longueurs, il est plus aisé de les <u>convertir en mètre</u> et de manipuler <u>des ordres de grandeurs</u>.


L'ordre de grandeur d'un nombre représente <u>la puissance de 10 la plus</u> <u>proche de ce nombre</u>.

Exemples:

- la distance Terre-Lune est de 384 000 km, 384 000 km = 384 000 x 10^3 m = 3,84000 x 10^8 m donc l'ordre de grandeur est de 10^8 m.

- Une molécule d'eau a une taille de 0,4 nm soit 0,4 x 10⁻⁹ m soit 4 x 10⁻¹⁰ m donc l'ordre de grandeur d'une molécule d'eau est de **10**⁻¹⁰ m.

